
An efficient method to compute Lie derivatives and

the observability matrix for nonlinear systems

Klaus Röbenack and Kurt J. Reinschke
Institut für Regelungs- und Steuerungstheorie, TU Dresden, Germany

Email: klaus@roebenack.de, kr@erss11.et.tu-dresden.de

Extended abstract, submitted to Nolta’2000

Many physical systems can be described by ordinary differential equations (ODE)

ẋ(t) = f(x(t)), x(0) = x0 (1)

with an output
y(t) = h(x(t)). (2)

Let us assume that the maps f : R
n → R

n and h : R
n → R

p are sufficiently smooth. In practical
applications the dimension p of the output is usually much smaller as the dimension n of the state-
space. Since most techniques for controller design require knowledge of the state (both conventional
approaches [1–3] and chaos control techniques [4,5]), the state x has to be reconstructed by observing
the output y. The most common way is to estimate the state by a second dynamical system called
observer. A system (1,2) is called observable if every pair of different initial values is distinguishable
with respect to the output signal [2]. Unfortunately, many systems are not observable due to an
unfavourable output map h. In practical applications one can usually chose between different sensors
and could chose different output maps. Therefore, it is important to check the observability of a
system. To do this it is convenient to look at the map

Θ : x 7→


y
ẏ
...

y(d)

 . (3)

If the map Θ is invertible (i.e., injective) for a fixed d, it is possible to reconstruct the state from the
output signal. It is basically impossible to check the global invertability for general nonlinear maps.
However, the Implicit Function Theorem (or, in more general cases the Rank Theorem) provides a
sufficient condition for local invertability. The map Θ is locally invertible at x0 if the Jacobian has
full rank, i.e., if

rank

(
dΘ(x)

dx

∣∣∣∣
x=x0

)
= n. (4)

Hence, the system is locally observable if the condition (4) holds. To compute this Jacobian (which is
called observability matrix ) we have to compute the map Θ first. Let Lfh(x) denotes the Lie derivative
of h along the vector field f . Higher order Lie derivatives are defined by

Lk
f h(x) :=

∂Lk−1
f h(x)
∂x

f(x) with L0
fh(x) := h(x).

With the chain rule we obtain the identity

y(k)(t) ≡ Lk
f h(x(t)) (k ∈ N) (5)

and get a series representation of the output y (see [1, p. 140]):

y(t) =
∞∑

k=0

Lk
f h(x0)

tk

k!

For small systems the Lie derivatives can be computed with computer algebra packages. This
approach has two drawbacks in case of large scale systems. First, for higher order derivatives the

1



computational effort (computation time, memory requirements) can increase drastically due to chain,
product and quotient rules [6]. Furthermore, symbolic differentiation usually entails a repeated eval-
uation of common expressions. Second, the system (1) may not be described by an explicitly given
mathematical function but by an algorithm containing conditional branches and loops. On the other
hand, difference quotients do not provide accurate values because of cancellation and truncation er-
rors. For higher order derivatives these accuracy problems become acute. These disadvantages of
symbolical and numerical differentiation can be circumvented with automatic differentiation [7]. Sim-
ilar to the symbolic differentiation, elementary differentiation rules like sum, product and chain rule
will be applied systematically. Tools for automatic differentiation will use concrete numbers instead
of symbolic expressions.

There are two basic concepts for the implementation of automatic differentiation software [7]:
program transformation with compiler-generators and operator overloading in case of object oriented
programming languages like C++ or Fortran90. Operator overloading can be employed to compute
univariate Taylor series. Consider a smooth map F : R

n → R
m which maps a curve x into a curve z.

Let x be given by
x(t) = x0 + x1t + x2t

2 + · · ·+ xdt
d (6)

with vector-valued coefficients x0, . . . ,xd ∈ R
n. We will use the function F to map the curve x into

a curve z. Provided that F is d times continously differentiable, we can express z by the Taylor
expansion

z(t) = z0 + z1t + z2t
2 + · · ·+ zdt

d +O(td+1) (7)

with

zj =
1
j!

∂jz(t)
∂tj

∣∣∣∣
t=0

.

Each Taylor coefficient zj ∈ R
m is uniquely determined by the coefficients x0, . . . ,xj . In particular,

we have
z0 = F(x0)
z1 = F′(x0)x1

z2 = F′(x0)x2 + 1
2F
′′(x0)x1x1

z3 = F′(x0)x3 + F′′(x0)x1x2 + 1
6F
′′′(x0)x1x1x1

Using automatic differentiation, the Taylor coefficients of the output signal will be obtained without
symbolic computations of the derivative tensors. One has only to overload elementary functions and
operations. Some examples of the associated calculations are listed in Table 1. These rules are already
implemented in Automatic Differentiation packages such as ADOL-C [8] or TADIFF [9].

Operations Taylor coefficients

z = x± y zk = xk ± yk

z = x · y zk =
k∑

i=0

xi yk−i

z = ex zk = 1
k

k−1∑
i=0

(k − i) zi xk−i, k ≥ 1

z = ln(x) zk = 1
x0

(
xk − 1

k

k−1∑
i=1

i zi xk−i

)
, k ≥ 1

Table 1: Computation of Taylor coefficients [9]

Automatic differentiation can be employed to compute an series expansion of the autonomous
ODE (1). Simultaneously, we will interpret f as a map between two curves x and z, where x and z
are given by the Taylor expansion (6) and (7). For known Taylor coefficients x0,x1, . . . ,xi of x, the
Taylor coefficients z0, z1, . . . , zi of z can be computed with automatic differentiation. Because of the
identity z(t) ≡ ẋ(t), we can calculate the Taylor coefficient xi+1:

xi+1 =
1

i + 1
zi (8)

Beginning with a given initial value x0 one can easily expand the solution of the ODE (see [10]).
Furthermore, we can compute the Taylor coefficients y0, . . . ,yd ∈ R

p of the output signal

y(t) = y0 + y1t + y2t
2 + · · · (9)

2



by automatic differentiation. With this results we can express the function values of the Lie derivatives
Lk

f h(x0) in terms of the Taylor coefficients calculated above (see [11]):

Lk
f h(x0) = k ! yk

Next, we want to compute the Jacobians ∂
∂xLk

f h(x). To do this we take the variational equation

˙̃x(t) = A(t) x̃(t), ỹ(t) = C(t) x̃(t) (10)

with A(t) = f ′(x(t)) and C(t) = h′(x(t)) into consideration. The Taylor coefficients Ai ∈ R
n×n and

Ci ∈ R
n×p of the matrices

A(t) = A0 + A1t + A2t
2 + · · ·

C(t) = C0 + C1t + C2t
2 + · · ·

can be interpreted as partial derivatives between Taylor coefficients:

Ai =
∂zi

∂x0
Ci =

∂yi

∂x0

Applying the chain rule, we can get the total derivatives by the following calculations (comp. [10,12]):

Bk = 1
k+1

dzk

dx0

= 1
k+1

k∑
j=0

∂zk

∂xj

dxj

dx0

= 1
k+1

(
Ak +

k∑
j=1

Ak−jBj−1

)
Dk = dyk

dx0

=
k∑

j=0

∂yk

∂xj

dxj

dx0

= Ck +
k∑

j=1

Ck−jBj−1

Now we are able to describe the Jacobians in terms of Taylor coefficients

∂Lk
f h(x)
∂x

∣∣∣∣
x=x0

=
dy(k)

dx

∣∣∣∣
x=x0

= k!
dyk

dx0
= k! Dk.

Hence, the observability matrix at x0 can be written as

∂Θ(x)
∂x

∣∣∣∣
x=x0

=


0! ·D0

...
(n− 1)! ·Dn−1


The rank condition (4) should be checked with a singular value decomposition. Moreover, it

is possible to compare different output maps by means of numerical properties of the observability
matrices such as the condition number or th smalles singular value. The example will illustrate this.

Example: Let us consider the ODE

ẋ1 = −x2 + x1 (1− x2
1 − x2

2)
ẋ2 = x1 + x2 (1− x2

1 − x2
2)

ẋ3 = −x3 (x2
1 + x2

2)

 ẋ = f(x) (11)

For the initial value x(0) = (1, 0, 1)> we have the solution

x(t) = (cos(t), sin(t), exp(−t))> . (12)

We consider the output functions

y1 = h1(x) = x1 + x2 + x3 and y1 = h2(x) = x2
1 + x2

2 + x2
3 (13)

The smallest singular values of the observability matrices

Θi(x) :=

 ∇hi(x)
∇Lfhi(x)
∇L2

f hi(x)

 (i = 1, 2)

along the solution (12) are given in Fig. 1.

3



0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 2 4 6 8 10

t

Output function 1

"output1.dat"

0

1e-06

2e-06

3e-06

4e-06

5e-06

6e-06

7e-06

8e-06

0 2 4 6 8 10

t

Output function 2

"output2.dat"

(a) (b)

Figure 1: Smallest singular values of the observability matrices

The inversion of the map Θi could become problematic in some small areas only (see Fig. 1(a)).
The smallest singular value of the map Θ2 takes values of a complete different region: All values are
less than 8 · 10−6. This suggests that the system (11) is not observable with the output map h2.

References

[1] A. Isidori. Nonlinear Control Systems: An Introduction. Springer-Verlag, 3. edition, 1995.

[2] E. D. Sontag. Mathematical Control Theory, volume 6 of Texts in Applied Mathematics. Springer-
Verlag, 1990.

[3] H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control systems. Springer Verlag,
1990.

[4] E. Ott, C. Grebori, and J. A. Yorke. Controlling chaos. Phys. Rev. Letters, 64:1196–1199, 1990.

[5] M. J. Ogorzalek. Chaos and complexity in nonlinear electronic circuits, volume 22 of World
Scientific Series on Nonlinear Science, Series A. World Scientific, 1997.

[6] A. Griewank. On automatic differentiation. In M. Iri and K. Tanabe, editors, Mathematical Pro-
gramming: Recent Developments and Applications, pages 83–108. Kluwer Academic Publishers,
1989.

[7] A. Griewank and B. Christianson. Evaluating derivatives — principles and techniques of compu-
tational differentiation. In print, 2000.

[8] A. Griewank, D. Juedes, and J. Utke. A package for automatic differentiation of algorithms
written in C/C++. ACM Trans. Math. Software, 22:131–167, 1995. http://www.math.tu-
dresden.de/wir/project/adolc/index.html.

[9] C. Bendtsen and O. Stauning. TADIFF, a flexible C++ package for automatic differentia-
tion. Technical Report IMM-REP-1997-07, TU of Denmark, Dept. of Mathematical Modelling,
Lungby, 1997.

[10] A. Griewank. ODE solving via automatic differentiation and rational prediction. In D. F. Griffiths
and G. A. Watson, editors, Numerical Analysis 1995, volume 344 of Pitman Research Notes in
Mathematics Series. Addison-Wesley, 1995.

[11] K. Röbenack and K. J. Reinschke. Reglerentwurf mit Hilfe des Automatischen Differenzierens.
Automatisierungstechnik, 48(2):60–66, 2000.

[12] K. Röbenack and K. J. Reinschke. Trajektorienplanung und Systeminversion mit Hilfe des Au-
tomatischen Differenzierens. Workshop des GMA-Ausschusses 1.4 “Neuere theoretische Verfahren
der Regelungstechnik”, Thun, Sept. 27-29, 1999.

4


